Turing Instability and Pattern Formation for the Lengyel–Epstein System with Nonlinear Diffusion
نویسندگان
چکیده
منابع مشابه
Turing pattern formation in the Brusselator system with nonlinear diffusion.
In this work we investigate the effect of density-dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the pr...
متن کاملPattern Formation (ii): the Turing Instability
1. Growing modes in a reaction-diffusion system In this section we summarize the classical linear Turing instability criterion for a reaction-diffusion system. Consider a reaction-diffusion system of 2-species as ∂U ∂t = ∇ · (D1 (U,V )∇U) + f (U,V ) , (1.1) ∂V ∂t = ∇ · (D2 (U,V )∇V ) + g (U,V ) , where U (x,t) ,V (x,t) are concentration for species, D1, D2 diffusion coefficients, f, g reaction ...
متن کاملTuring Pattern Formation without Diffusion
The reaction-diffusion mechanism, presented by AM Turing more than 60 years ago, is currently the most popular theoretical model explaining the biological pattern formation including the skin pattern. This theory suggested an unexpected possibility that the skin pattern is a kind of stationary wave (Turing pattern or reaction-diffusion pattern) made by the combination of reaction and diffusion....
متن کاملTuring pattern formation with fractional diffusion and fractional reactions
We have investigated Turing pattern formation through linear stability analysis and numerical simulations in a two-species reaction–diffusion system in which a fractional order temporal derivative operates on both species, and on both the diffusion term and the reaction term. The order of the fractional derivative affects the time onset of patterning in this model system but it does not affect ...
متن کاملPattern formation in spatially heterogeneous Turing reaction–diffusion models
The Turing reaction–diffusion model [Phil. Trans. R. Soc. 237 (1952) 37–72] for self-organised spatial pattern formation has been the subject of a great deal of study for the case of spatially homogeneous parameters. The case of parameters which vary spatially has received less attention. Here, we show that a simple step function heterogeneity in a kinetic parameter can lead to spatial pattern ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Applicandae Mathematicae
سال: 2014
ISSN: 0167-8019,1572-9036
DOI: 10.1007/s10440-014-9903-2